To illustrate the above the dimensionless temperature 6 is shown against the dimensionless time Fo
with parameters, namely, the value of the relaxation function H; of the infernal energy at a current instant,
and the dimensionless relaxation time Fo,. Inthe classical heat-conduction theory one has H, =1 and Fo, = 0.
Therefore, as seen from Fig. 1, when H; is suitably high, say, H, = 0.95, a change in Fo; has a slight effect
on the results, Similarly, for Fo, — 0 a variation in the parameter H; has no noticeable effect on the non-
stationary temperatures. However, for small values of Hyand large Fo; there is a considerable effect of the
fading memory. This is clear from the diagram for H, = 0.1 and Fo; =100,

NOTATION

T, temperature; T, equilibrium temperature; Tg, temperature of the surrounding medium; M, point
of volume; N, point of surface; s, integration variable; p, Laplace variable; h(s), relaxation function of
internal energy; A(s), relaxation function of heat flow; «, heat-exchange coefficient; r, time; Fo, dimen-
sionless time; Fog, dimensionless integration variable; H,, the value of dimensionless relaxation function
of internal energy at current time; H(s), dimensionless relaxation function of internal energy; 6, dimension-
less temperature; Fo;, dimensionless relaxation time of internal energy; 6f, dimensionless temperature of
the medium,
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NONSTATIONARY FILTRATION OF A THREE-PHASE
MIXTURE TAKING ACCOUNT OF GRAVITATION

L. F. Yukhno ) UDC 518:517.9:532

A method of solution and results of calculations are presented for the problem of displacement
of gasified petroleum by water in an inclined stratum,

The process of displacement of gasified petroleum by water in an inclined stratum which is assumed
homogeneous is examined in this paper; the physical properties of the fluids and collector are considered
known. If is also kept in mind that the process is isothermal and that thermodynamic equilibrium is built up
instantaneously between coexisting phases. We neglect the influence of capillary forces.

Under the assumptions mentioned, the process of one~-dimensional nonstationary filtration of a three-
phase mixture (water — petroleum —gas) is described by a nonlinear system of second-order partial differen-
tial equations (see [l]), which is written as follows in dimensionless form:

& [ (e (v [

dx by ox ot Bp
d Ry [ Op )] 0 ( Oy
a. = ———— .
el el el )
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Fig. 1. Diagram of working the stra-
tum.

The following are selected as the characteristic values to which the dimensional quantities are referred:
Pss K, tips: Hws) Hgs: Ygs» L, and the characteristic time t* =mp¢pSL2/(kps). The quantities ayp, ag, aw
have the form ap =7pL sin @/pg, ag = vgsLsin a/ps, ay =YwL sin @/ps. These are dimensionless param-
eters which characterize the influence of gravitation. Here p = p(x, t), 0g =0g(x, t), oy =0y (x, t) are the
desired functions, while kp, kg, kw are given functions of the saturation of 0 and oy, and sp, Bps Bg, kps Vg
are given functions of the pressure p.

The numerical solution of filtration problems described by a system of equations of the type (1) has been
considered in [2,3], for example. A numerical method based on the transformation of {1) proposed in [4] and
yielding a saving in machine fime is proposed for the solution of the problem posed in this paper. Conse-
quently, changes in the characteristics of the process in both the time and in the length of the stratum have
been obtained.

Let us consider the process of working a thin inclined linear stratum of length ¢ in the mixed mode of
displacing gasified petroleum by water under contour flooding conditions while maintaining a constrant drop
between the pressure and utilization galleries (Fig. 1).

Prior to the beginning of utilization the pressure in the stratum was distributed only under the influence
of gravitational forces. The mixture consisted of two phases: water (domainI in Fig. 1) and petroleum (do-
main Il in Fig. 1). The saturation of the phases in domains ] and II is constant, while there is 2 jump in satu-
ration on their interface. At the beginning of utilization the pressure in the utilization gallery is instantly re-
duced to the given pressure and is then kept constant. The pressure at which pumping of the water occurs is
also constant. The pressure in the stratum will drop upon sampling the mixture., This resulfs in degasifica-
tion of the petroleum in domain II and the appearance of a gas phase. A mixed mode of three-phase mixture
filfiration arises. This process is described by the system (1) under the following initial and boundary condi-
‘tions

»(x 0) = {1+ alp+ aelhy— 2, 0<x<L,
I+ ap(t—2), X<,
og(x, 0)=0, 0<Cx<Y, 2)

oo, 0) {0.85, 0<x< Ly
LW 0.2, [,<x<|
PO, H=1+al,+ad, o0, =0,

3)
{0, H =0.85, p{, £f)= p.{consi).

Let us intreduce notation for the desired funetions: u = Og, V =0y. Let us write the system (1) in the
matrix form

) O 4
€92 (A(y) » +B(y)), @)

where .
y=I(p u, v), C=(c, Cy ), A=(ay, a, a3, B=(b, b, by),

(1—u—uv)sy u l—u—v v
= + - s Ly = — y Lp== .
E pP fe : SP ? B
a; = _kﬂfll_(__kg}h_, a, = k:g gy = Rty )
upbp  pgbg [N Wi
b, = _aEEQfP_ +_‘7g_Yg£?gE2_ , by= fbkg , by= Bty
bpBp i HpBp Mo
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Let us perform the transformation of the system (4) to an equivalent form as proposed in [(4].
We assume that the Jacobian J =8(cy, ¢y, c3)/0{p, u, v) does not vanish in the domain under considera~
tion. Then Q = liqjjll = (BC/By)'1 exists. We represent the left side of the system (4) in the form

oC(y) _ oC oy
ot dy ot

Multiplying both sides of this system by the matrix Q, we obtain

Jy a. (, adp )
= A B .
ot Q 0x ( ox + J

We consider the first equation of this system as an equation for p, namely,

3
ap % a dp
—_ = : . b. 1.
i (@5 +) ®)
=
We obtain the equations for u and v as follows., We rewrite the system (¢) as
oC %p dA dp 0B
=A 6
ot 0x? - ox Ox + ox ()

By eliminating 3%/8x% two independent equations which comprise the desired system for u and v must be ob-
tained from the three equations in the system (6). Let us note that the functions kp, kg, kw are such that they,
and therefore also the coefficients aj, bj, vanish at some portions of the segment 0 < x = [, Hence, it is im-
possible to eliminate 8%/8x? from the two remaining equations by using any one equation of the system (6) in
the whole segment 0 = x = [, since a degenerate system of equations will be obtained because of such an elimi-
nation. We proceed as follows. Noting that a; + a4 + a3 > 0 everywhere for 0 < x =< [, we consider a linear
combination of Egs. (6) which will be the sum of these equations. We eliminate 8%p/8x? from all the equations
of the system (6) by using this linear combination. It can be shown that any two equations hence obtained will
be linearly independent and therefore can be considered as a system of equations in uand v. Hence, by trans-
forming the first two equations of (6), for example, in such a manner, we obtain the following system for u
and v:

al—a*(‘%::iﬂ_(a‘l‘l'as)%;l:[alia’%@ (Q + ) xJ gf: _{_al_(?%;_l_ﬂ_(az_f_as)%l’
X
- C
3 L ac d(a, + ay) 9 o(b b ab.
o 2O a) T [0 20 (g 0y 2 2| 3t L0 o0y B

Thus, we have gone from the system 4) to its equivalent system (5) and (7). Let us consider a difference
approximation of the problem (5), (7), (2), (3). Let hand T be the spacings in x and t:

o = p(x;, 1), u;l =u(xir fn)v U =(x,, n))

x;=1th, i=0,1, ..., N, x, =1, t,=nt, n=0, 1,
ai = a; (py, uf, ), by =b;(p}, up, o),
& =cs (o, at U), g%, == 4y (] 42, OP),
i=1,2, 3.
Let us approximate (5) by the following scheme:
p"+‘ — p 2 q:, { [a, ir1/2 p”‘H —;pn+1 —aj i1z ’p?+lh—p?_+ll + b;?’H_l “—2b7,,~_1 ] ,i=1,92 ..., N—1. (8)

Here aj+y/; = /z(ai + @j+q)-
From the boundary conditions we have
P+ = 1+ aplp + s P = . ©®
The order of the approximation of the scheme (8) and (9) is O@ + h?).

A factorization method is used to solve the system (8) and (9). As is known (see [5], for example),
compliance with the condition
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Fig. 2. Distribution of p (upper series of curves), og
(lower), and gy (middle) along the length of an inclined
stratum @) and for a horizontal stratum (b); numbers
on the curves signify the values of t.

3

n n
Equi,iaf.f>0
=

everywhere for 0 = x = [ is sufficient for stability of this method. As can be verified, this condition holds
for the problem under consideration.

Now let us turn to the system (7) by considering it relative to u and v. It can be seen by direct substi-
tution that it is hyperbolic and that both families of characteristic directions of this system have a slope to
the right so that the derivatives with respect to x should be replaced by left differences {see [6]) in order to
obtain a stable scheme. According to the above, we consider the following implicit difference scheme for (7)
(for brevity, we omit the superscript n + 1, for example, aj,i denotes a;li“):

H

—
Ca,i + 0y, —C5 ,—C5; 1,1 —C1
ay,; - —(ay,; -+ a5,5) =
— Gy i Qg5 — Qa3 — O35 Q1,7 Q11
B [al,i i » 7 y s _(ag’i+a3,i) ] 7 s X
Pi — Pia bz,i + bs,i - bz,i—1 — bs,i—1 bl,i — bl,i—l
X 7 + @y, 7 "__(az,i + ag,;). 7 , (10)
C,i =+ Ca,6 — O, — G5 Co,1 €5 _
Q5 p —(ay,; +a3,:) — P =
Qg — Gy, — 8,51 Qo,i — Gy 51
3 ) 9 i— ] y Py 2
[am 7 —(ay,; + a,,) B X
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Pi —Piaa by; + by — byia—bs:1
X 7 -+ ay 5 -

by, —by;_ .
——(alyi—l—a&i)—z’—h;l, i=1,2 ..., N.
From the boundary conditions we obtain
urtl =0, vi+! = 0.85. 11
The value of pj calculated in the problem (8) and (9) for the (n + 1)-th layer is used as pi in (10).

The nonlinear system of equations (10) and (11) was solved as follows. For fach fifed i, starting with
n+i .n+i

i=1toi=N, Egs. (10) were considered as a system of nonlinear equations inuj '*, v{ '*, whose solution
was found by iterations by the Newton method. The values ulty® —ull  + ull, v{l_i’l — vl +v] were taken as

good initial approximations.

The difference method considered yielded good results. On the average, 2-3 iterations by the Newton
method assured sufficient accuracy.

The difficulty arising in this problem should be noted, which is that the functions sp, Bps Hp are such
that they become constants at a pressure greater than the saturation pressure. This means that the Jacobian
J vanishes for p > 1, which complicates the application of the method described. Hence, a matrix adjoint to
the matrix 8C/9y (i.e., comprised of complements to the elements of the latter) was taken as Q inthe actual
computation, and the equation

was considered in place of (5).

Let us present an example of the computation. The computation was performed for a stratum with the
following parameters: L =500m, Ip =04, Iy = 0.1, m = 0.2, k = 0.2d, pg =140 kg/cm?, pe = 0.5. The
relative phase permeabilities were determined by the relationships (see [7])

(085 —0g—aw*® | | 0.85
b — !( ) (1 + 2.40y + 16.5040), Og + Gy < 0.85,
=

T 085
1", 085 <oy + oy <1,
G0Ny 50y 01<o, <1
kg’: 0.9 / ( . va Vgt
0, 0 <o, <01,
_ow— 0.2 3% 092< g, < 1
kg=:( o5 ) 0 0rswsl
0, 0 <oy 0.2.

The viscosities of-the phases and their specific gravities were considered equal pps = 1.6 cp, pgs = 0.01 cp,
pws =1cp, pg =1, pw =1, vp =0.85-107° kg/em’, yy =1.2:107 kg/em?, ygg = 0.28-107% kg/em?®.

The pressure dependences of the physical properties of the petroleum and gas were expressed by the fol-
lowing formulas (see [1]):

o (p)— | 86010297, 0214<p <1,
P {76.297, p>=1,
1 1.5—0.5p, 0214 < p< 1,
%@—h, p>1,
B ()_{0.177p—§—1.027, 0.214<p<,
P 1,204, p>1,

ﬁg(P) = 0.007/p, vg(p) = p, Bw=1.
For these values of the parameters 132 days correspond to the unit of dimensionless time.

The results of computations are presented in Fig. 2a and b, Shown is the pressure and saturation dis~
tributions along the stratum at different times t, where Fig. 2a corresponds to an inclined stratum (o = 30°),
and Fig. 2b to a horizontal stratum (o = 0°).
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The results obtained correspond to existing conceptions. The form of the pressure distribution curves
for different times is due to the processes of petroleum degasification, and petroleum and gas displacement
by water, and also by the compressibility of the gas. The shape of the og distribution curves reflects the
initial growth of og because of degasification of the petroleum and broadening of the moving gas domain, and
then the diminution in og to the critical value at which it is immobile. This occurs because the mobile gas
is displaced by the water being introduced into the stratum. The difference between the og curves in Fig. 2a
and b for the same values of t is explained by the fact that the gas being separated out of the petroleum under
the effect of gravitational forces in an inclined stratum will migrate upward into the utilization gallery. Hence,
for example, fort = 0.3, 0.5 and 0.76 the mobile gas zone in the stratum and the value of og in this zone are
somewhat less for an inclined stratum than for a horizontal stratum,

NOTATION

kp, kg, kw, relative phase permeabilities for petroleum, gas, and water, respectively; p, pressure;
ps, saturation pressure; Ogs Ow, gas and water saturation; up, pg, pw, phase viscosities; pupg, ugs, Hws,
phase viscosities at p = ps; W = pps/pws, K2 = pps/kgs; Bps Bgs Bw, volume phase coefficients; sp, gas
solubility in petroleum; Ypr Yg» YW, phase specific gravities; Ygss 828 specific gravity at p = pg; k, abso-
lute permeability of the medium; m, porosity; t, time; x, space coordinate; L, length of the stratum; o,
angle of inclination of the stratum to the horizon. '
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